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Motivation

High order methods in aerodynamics

Higher accuracy with fewer degrees of freedom

Fewer elements needed

Nodal Discontinuous Galerkin finite elements

Cartesian Setting-Higher efficiency per degree of freedom



Governing Equations

Compressible Navier-Stokes equations

∂Um

∂t
+
∂Fmi

∂xi
= 0

Conservative variables U = {ρ, ρu, ρv , ρw , ρE}T

F =


ρu ρv ρw

ρu2 + P − τ11 ρuv − τ12 ρuw − τ13

ρuv − τ21 ρv2 + P − τ22 ρvw − τ23

ρuw − τ31 ρvw − τ32 ρw2 + P − τ33

ρuH − τ1juj + q1 ρvH − τ2juj + q2 ρwH − τ3juj + q3


ρE =

P

γ − 1
+

1

2
ρ(u2 + v2 + w2)



DG Formulation

Multiply by test function and integrate∫
Ω

Ψr

(
∂Um

∂t
+
∂Fmi

∂xi

)
dΩ =

∫
Ω

ΨrSmdΩ

Integrate by parts

Rmr =

∫
Ω

(
Ψr
∂Um

∂t
−ΨrSm −

∂Ψr

∂xi
Fmi

)
dΩ+

∫
Γ

ΨrFminidΓ = 0

Inviscid flux: Lax-Friedrichs and Roe

Viscous flux: symmetric interior penalty (SIP)



Tensor Basis Functions

Letting Ψijk = φξ1
i
φξ2

j
φξ3

k
for i , j , k = 0, · · · ,M and solution

expansion coefficients a, written as:

Um (ξ, t) =
M∑
k=0

M∑
j=0

M∑
i=0

aijk(t)φξ1
i
φξ2

j
φξ3

k

Let φξi = Li , the 1-D Lagrange polynomial using the
Gauss-Legendre quadrature points.



Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)
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64th Order Solution



64th Order Solution



Solver Capabilities Cont.

• Explicit time stepping through Method of Lines

- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)

* explicit time step consistent with Laslo Diosady and
Scott Murman1

δt = min

(
S ∗ h

4 (‖U‖+ c)
,
h2

ν

)
h =

min(dx , dy , dz)

(p + 1)2.5

S = Number of Stages

• Parallel through MPI

1Design of a Variational Multiscale Method for Turbulent Compressible Flows
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Validation Results: Ringleb Flow

Problem Description2

Governing equations: 2D Euler equations with γ = 1.4

2http://www.as.dlr.de/hiocfd/case c1.2.pdf



Validation Results: Ringleb-Rho

P 1 2 4 6 9

Slope 1.975562 3.056287 4.90858 7.016717 9.259090
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Validation Results: Ringleb-RhoU

P 1 2 4 6 9

Slope 2.000943 2.912026 4.860378 6.937690 10.51220
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Validation Results: Ringleb-RhoV

P 1 2 4 6 9

Slope 1.804886 2.877250 4.990545 7.481386 9.754523
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Validation Results: Ringleb-RhoE

P 1 2 4 6 9

Slope 1.974541 2.998977 4.906502 6.895422 9.141250
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Validation Results:Taylor Green Vortex

Problem Description3

Domain: [−πL, πL]3

M0 = 0.1

Re = 1600

Pr = 0.71

u = V0sin(x/L)cos(y/L)cos(z/L)

v = −V0cos(x/L)sin(y/L)cos(z/L)

w = 0

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + sin(2y)) (cos(2z) + 2)

]
Mesh: 64x64x64

p = 4 (5th order)
3http://www.as.dlr.de/hiocfd/case c3.5.pdf



Validation Results:Taylor Green Vortex
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Validation Results:Taylor Green Vortex
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Validation Results:Taylor Green Vortex
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Timing Results

All results are computed in serial on Intel Xeon E5-2670 processors
with a clock speed of 2.6Ghz and 2GB per core memory.
• Mount Moran TAU benchmark = 7.2 sec

Mount Moran Specs:
• 93.92 Tflops cluster serving the University of Wyoming
• 218 nodes with 2, eight-core Intel Xeon E5-2670 Sandy Bridge
processors on each node (3,488)



Timing Results: 3D Euler

DOF=(number of fields)(p + 1)3NxNyNz

Three-dimensional Euler Equations
Code Order DOF Mesh Size Time/Res/DOF

Finite Difference 1 5,151,505 100 x 100 x 100 5.39e-8
Finite Difference 3 5,151,505 100 x 100 x 100 8.37e-8
Finite Difference 5 5,151,505 100 x 100 x 100 1.14e-7

DGSEM 2 5,000,000 50x50x50 7.77e-8
DGSEM 3 4,851,495 33x33x33 6.54e-8
DGSEM 4 5,000,000 25x25x25 6.33e-8
DGSEM 5 5,000,000 20x20x20 6.38e-8
DGSEM 6 5,306,040 17x17x17 6.57e-8
DGSEM 7 4,705,960 14x14x14 6.92e-8
DGSEM 8 4,423,680 12x12x12 7.36e-8
DGSEM 9 4,851,495 11x11x11 7.57e-8
DGSEM 10 5,000,000 10x10x10 7.83e-8
DGSEM 16 4,423,680 6x6x6 1.03e-7
DGSEM 24 4,423,680 4x4x4 1.35e-7
DGSEM 32 4,423,680 3x3x3 1.78e-7
DGSEM 48 552,960 1x1x1 2.41e-7



Timing Results: 3D Euler
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Timing Results: 3D Euler

0 2 4 6 8 10 12 14 16
5

6

7

8

9

10

11

12

13
x 10

−8

Order

C
P

U
 T

im
e

/R
e

s
/D

O
F

 (
s
e

c
o

n
d

s
)

3D Euler Equations: Finite Difference vs DGSEM

 

 
Finite Difference

DGSEM

At 5th order, DGSEM is ∼twice as efficient!



Timing Results: Cartesian 3D Navier-Stokes

DOF=(number of fields)(p + 1)3NxNyNz

Three-dimensional Compressible Navier-Stokes Equations
Code Order DOF Mesh Size Time/Res/DOF

DGSEM 2 5,000,000 50x50x50 2.74e-7
DGSEM 3 4,851,495 33x33x33 2.59e-7
DGSEM 4 5,000,000 25x25x25 2.45e-7
DGSEM 5 5,000,000 20x20x20 2.68e-7
DGSEM 6 5,306,040 17x17x17 2.97e-7
DGSEM 7 4,705,960 14x14x14 3.25e-7
DGSEM 8 4,423,680 12x12x12 3.30e-7
DGSEM 9 4,851,495 11x11x11 3.63e-7
DGSEM 10 5,000,000 10x10x10 3.87e-7
DGSEM 16 4,423,680 6x6x6 8.30e-7



Timing Results: Cartesian 3D Navier-Stokes
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DGSEM

Laslo Diosady and Scott Murman ≈ 1.5e−7 (non-Cartesian) 4

F. Hindenlang, G. Gassner ≈ 4.0e−7 (non-Cartesian) 5

4Design of a Variational Multiscale Method for Turbulent Compressible Flows
5Explicit Discontinuous Galerkin methods for unsteady problems



Results: Parallel Scalability

• Strong Scalability

• Computed on Mount Moran and Yellowstone

• Taylor-Green Vortex

MPI Implementations:

• MPI Cartesian Topology

• MPI Derived Data Types

- MPI Type Contiguous (x-y plane faces)
- MPI Type Vector (x-z and y-z plane faces)



Yellowstone Strong Scalability Results

Following results are computed in parallel on Intel Xeon E5-2670
processors with a clock speed of 2.6Ghz and 2GB per core memory.
•Yellowstone TAU benchmark = 8.4 sec

Yellowstone Specs:
• 1.504-petaflops peak IBM iDataPlex cluster
• 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge) processors with
Advanced Vector Extensions (AVX), 8 flops per clock (72,576)
• 144.58 TB total system memory



Results: Strong Scalability P = 4

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 1,310,720,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 4
# Procs DOF per Proc Efficiency

1024* 1,280,000 1.0000
2048 640,000 0.9801
4096 320,000 0.9327
8192 160,000 0.9037
16384 80,000 0.8358

*Assumed Perfect



Results: Strong Scalability P = 7

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 5,368,709,120
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 7
# Procs DOF per Proc Efficiency

1024* 5,242,880 1.0000
2048 2,621,440 0.9923
4096 1,310,720 0.9793
8192 665,360 0.9580
16384 327,680 0.9210

*Assumed Perfect



Results: Strong Scalability P = 9

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 10,485,760,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 9
# Procs DOF per Proc Efficiency

1024* 10,240,000 1.0000
2048 5,120,000 0.9877
4096 2,560,000 0.9768
8192 1,280,000 0.9633
16384 640,000 0.9340

*Assumed Perfect



Results: Parallel Scalability
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Future Work: Short Term Goals

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

- Tamrex3DG = TeXsor3DG + SAMRAI

– analogous version of SAMARC
– different solution orders on different blocks

• 3D Navier-Stokes Dual Mesh/Dual Flow Solver

- analogous version of HELIOS
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Future Work: Short Term Goals cont.



Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG
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